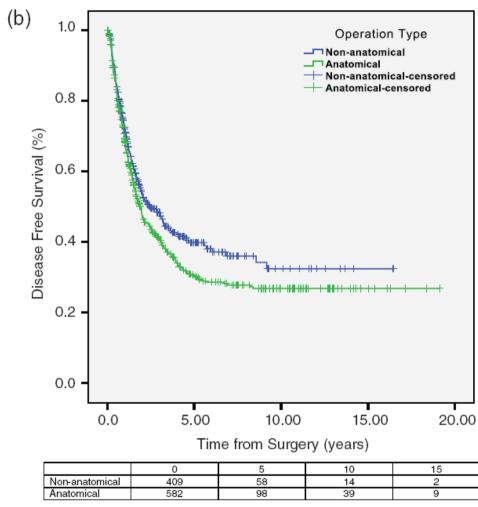
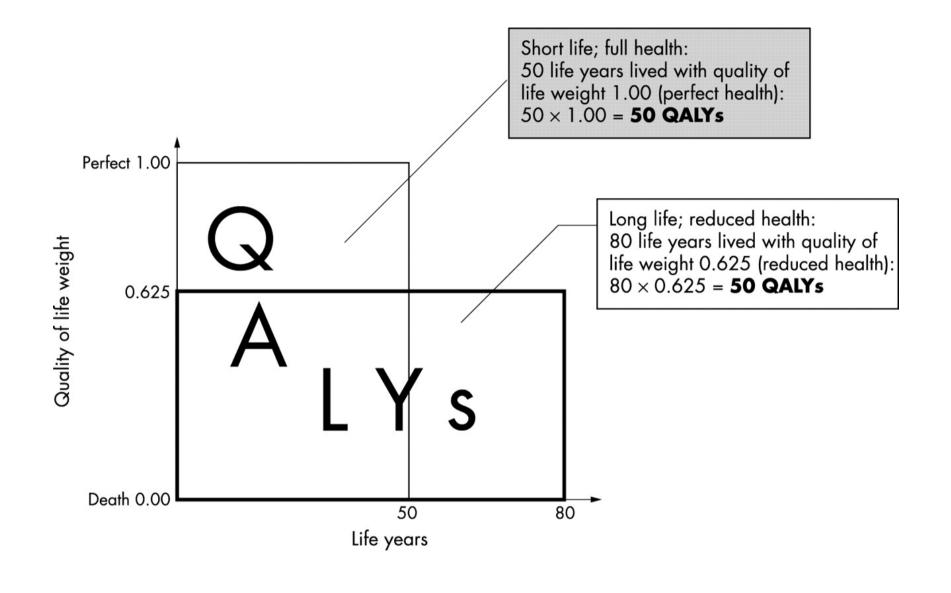
2016 ESPEN Congress (Copenhagen, 17-20 September 2016) FSPFN-FNHA-MNI Joint Session

Medical Nutrition supports cost-effective care

Alessandro Laviano

Dipartimento di Medicina Clinica

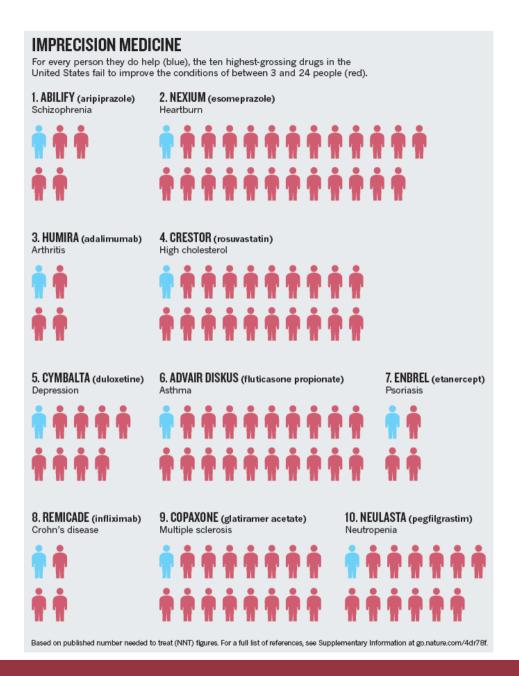



alessandro.laviano@uniroma1.it

Impact of parenchymal preserving surgery on survival and recurrence after liver resection for colorectal liver metastasis

Sanjay Pandanaboyana,* Richard Bell,† Alan White,† Samir Pathak,† Ernest Hidalgo,† Peter Lodge,† Raj Prasad† and Giles Toogood†

PERSPECTIVE

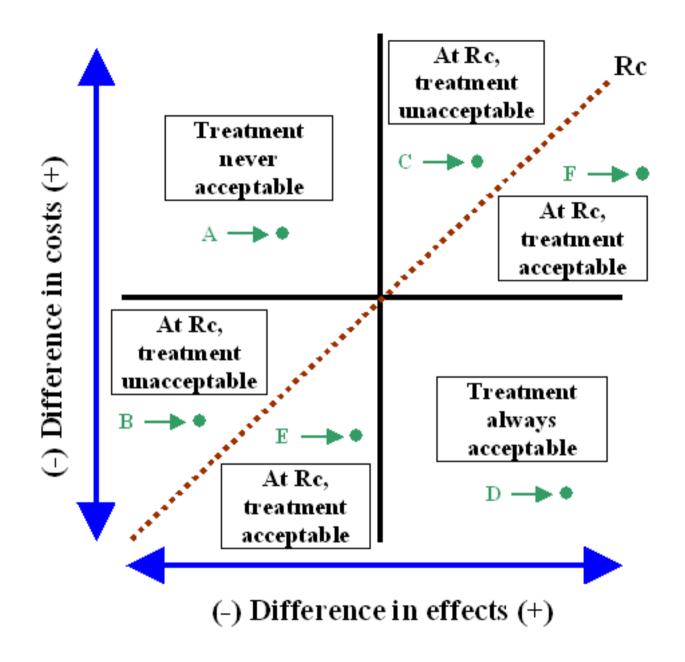

The precision-oncology illusion

Precision oncology has not been shown to work, and perhaps it never will, says **Vinay Prasad**.

WHEN
CONSIDERED

OBJECTIVELY,
THE PROSPECTS
AND POTENTIAL
OF PRECISION
ONCOLOGY ARE
SOBERING.

Time for one-person trials


Original article

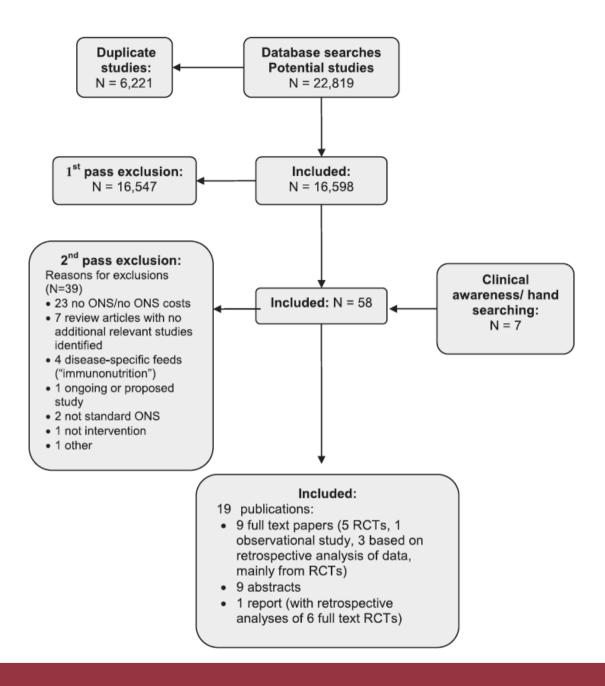

The economic costs of disease related malnutrition[☆]

Table 3Total additional costs of disease related malnutrition according to gender, age and healthcare sector * 1.000.000 (Euro 2011).

Age	Men		Women		Total
	>18 and <60	>60	>18 and <60	>60	All ages
Hospital setting	188	424	184	437	1233
Nursing- and residential home setting	9	107	6	331	453
Home care setting	6	43	9	126	185
Total	203	574	200	894	1871

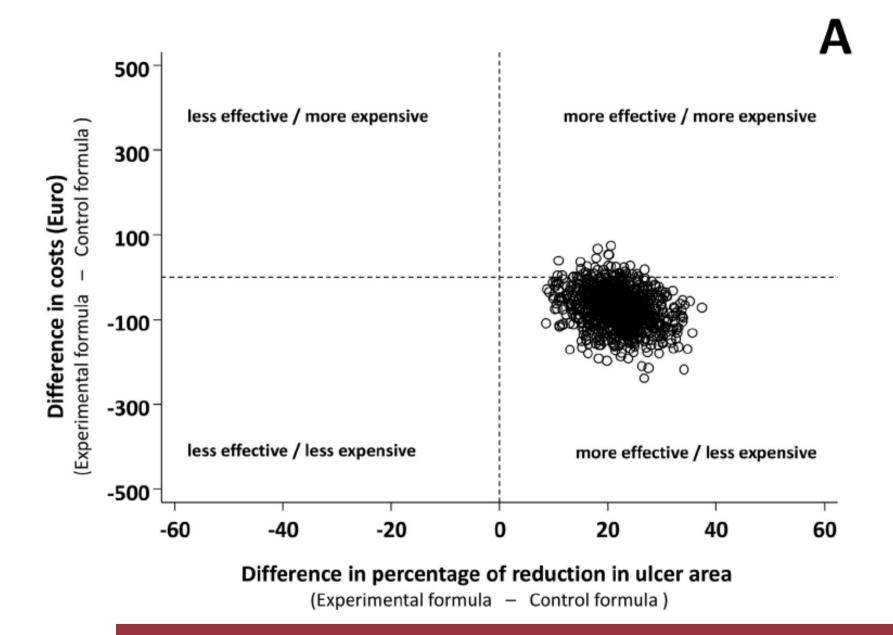
A systematic review of the cost and cost effectiveness of using standard oral nutritional supplements in community and care home settings

	Setting	Measure	Difference in means	Standard error	p-Value	D	ifferend and	ce in		s
Norman et al 2012 ¹³	С	а	-41.163	18.649	0.027	- 1		-1		
Edington et al 2004 ²⁶	С	b	-1.923	27.545	0.944		\vdash	+	\dashv	
Hirsch et al 199339*	С	b	-46.875	18.169	0.010	-	┿	-		
Wilson et al 200140*	С	С	-14.631	14.000	0.296		-	+		
Arnaud-Battandier et al 200419	С	е	-21.041	4.606	0.000		1	•		
Smedley et al 2004 (SC)18*	C (preop)) d	-9.220	8.753	0.292		-	+		
Smedley et al 2004 (SS)18*	CHC	d	-17.021	9.915	0.086		-	•		
Smedley et al 2004 (CS)18*	HC	d	-4.965	11.263	0.659		-	┽		
Neelemaat et al 2012 ¹⁴	HC	d	6.667	16.280	0.682		-	┿	-1	
			-16.535	3.996	0.000		-	•		
						-100	-50	0	50	100
hospitalization							ours		Favo conti	

	Risk ratio	p-Value	Risi	cratio ar	nd 95% (CI
Delmi et al 1990 (6 months) ³⁵	0.600	0.237	ı	احا	- 1	ī
Potter et al 2001 ³⁶	0.667	0.119				
Gariballa et al 1998 (3 months)38	0.286	0.089	-			
MacFie et al (2000) ³³	1.852	0.605		—	+	
Keele et al 1997 (before day 1)32	4.444	0.332		$+$	\dashv	\dashv
	0.650	0.038		•		
			0.01 0.	1 1	10	100
			Favor ONS		Favo	

Mortality

	Difference in means	Standard error	p-Value	Difference in means and 95% CI
Smedley et al 2004 ²⁶	-22.4	13.9	0.107	
Keele et al 1997 ²⁵	-53.0	19.1	0.006	─ ╃─
Rana et al 1992 ²⁴	-53.8	16.4	0.001	
Beattie et al 2000 ²⁸	-36.8	21.4	0.086	 •
MacFie et al 2000 ²⁷	33.4	31.4	0.288	
Delmi et al 1990 ²⁹	-42.8	23.4	0.068	-
Lawson et al 200340	-36.0	10.8	0.001	
	-35.3	7.6	0.000	•
				- 100 -50 0 50 100
				Favours Favours ONS control


Surgical complications

	Difference in means	Standard error	p-Value	Difference in means and 95% CI (British pounds)
Rana et al 1992 ³¹	-1249	832	0.133	├ ─ ├ ─
Keele et al 199732	-897	718	0.212	 •
Smedley et al 2004 ²⁶	-261	561	0.666	- ∳
MacFie et al 2000 ³³	-1126	933	0.228	├── ── │
Beattie et al 200034	-830	969	0.392	- • -
	-746	338	0.027	
				-3000-1500 0 1500 3000
				Favours Favours ONS control

Cost savings (GBP)

	Difference in means	Standard error	p-Value	Difference in means and 95% CI (% of control)
Rana et al 1992 ³¹ Keele et al 1997 ³² Smedley et al 2004 ²⁶ MacFie et al 2000 ³³ Beattie et al 2000 ³⁴	-20.7 -18.2 -4.9 -23.0 -10.6 -13.2	13.8 14.5 10.6 19.1 12.4 6.0	0.133 0.212 0.642 0.228 0.392 0.027	
	-10.2	0.0	0.021	-80 -40 0 40 80 Favours Favours ONS control

Cost savings (%)

Impact of Oral Nutritional Supplementation on Hospital Outcomes

■ Table 5. Effect of ONS Use on 30-Day Readmission®

	Regression Specification							
	(1)	(2)	(3)	(4)	(5)			
Subset of Matched Sample Analyzed	Follow-up at least 1 d	Follow-up at least 1 d	Follow-up 1 d to 3 y	Follow-up 1 d to 2 y	Follow-up 1 d to 1 y			
Model	OLS	IV	IV	IV	IV			
Effect of any ONS use on probability of readmission (SE)	-0.00310 ^b (0.00103)	-0.0231b (0.00204)	-0.0475 b (0.00225)	-0.0504 ^b (0.00235)	-0.0550 ^b (0.00254)			
Predicted probability of readmission without ONS	0.334	0.343	0.369	0.377	0.391			
Predicted probability of readmission with ONS	0.331	0.320	0.322	0.327	0.336			
Change due to ONS use	-0.9%	-6.7%	-12.7%	-13.3%	-14.1%			
Observations, n	862,960	862,960	735,636	670,823	566,682			

IV indicates instrumental variables; OLS, ordinary least squares; ONS, oral nutritional supplements; SE, standard error.

^aThe 30-day readmission window was approximate as only the month and year were observed in the data. Regression results were from a sample of ONS episodes matched 1:1 to non-ONS episodes on propensity to receive ONS. Terminal episodes and tube-fed episodes were excluded. The instrument was the fraction of episodes in a given hospital in a given quarter involving ONS use. Standard errors took into account repeated observations of the same individual.

^bSignificant at the 1% level.

Impact of Oral Nutritional Supplementation on Hospital Outcomes

■ Table 4. Effect of ONS Use on Episode Cost®

	Regression Specification								
	(1)	(2)	(3)	(4)	(5)	(6)			
Subset of Matched Sample Analyzed	All	All	Follow-up at least 1 d	Follow-up 1 d to 3 y	Follow-up 1 d to 2 y	Follow-up 1 d to 1 y			
Model	OLS	IV	IV	IV	IV	IV			
Effect of any ONS use on episode cost (SE)	\$7598 ^b (\$9.70)	-\$4734 ^b (\$10.07)	-\$3694 ^b (\$10.47)	-\$4473 ^b (\$11.69)	-\$4873 ^b (\$12.5)	-\$5519 ^b (\$14.25)			
Predicted episode cost without ONS	\$14,998	\$21,950	\$20,664	\$21,522	\$22,028	\$22,950			
Predicted episode cost with ONS	\$22,596	\$17,216	\$16,969	\$17,049	\$17,155	\$17,431			
Change due to ONS use	50.7%	-21.6%	-17.88%	-20.78%	-22.12%	-24.0%			
Observations, n	1,160,088	1,160,088	862,960	735,636	670,823	566,682			

IV indicates instrumental variables; OLS, ordinary least squares; ONS, oral nutritional supplement; SE, standard error.

^aRegression results were from a sample of ONS episodes matched 1:1 to non-ONS episodes on propensity to receive ONS. Terminal episodes and tube-fed episodes were excluded. The dependent variable in the regressions was log of episode cost. Costs are in 2010 dollars. The instrument was the fraction of episodes in a given hospital in a given quarter involving ONS use. Predicted episode costs used Duan's smearing estimator. Standard errors took into account repeated observations of the same individual.

bSignificant at the 1% level.

LESS IS MORE

Trends in the Overuse of Ambulatory Health Care Services in the United States

Minal S. Kale, MD; Tara F. Bishop, MD, MPH; Alex D. Federman, MD, MPH; Salomeh Keyhani, MD, MPH

	% (95% CI)					
/ariable	1999	2009	P Value			
Inderuse measures group						
Antithrombotic therapy for AF	45.9 (33.4-59.0)	71.9 (66.5-76.7)	<.01			
ACE inhibitor use for CHF	44.8 (37.6-52.4)	41.6 (37.4-45.9)	.47			
Aspirin use for CAD	28.4 (22.4-35.3)	64.5 (60.2-68.5)	<.01			
BB in CHF	20.6 (11.8-33.4)	59.7 (53.8-65.4)	<.01			
BB in CAD	28.1 (22.1-35.2)	55.2 (51.7-58.8)	<.01			
Antiplatelet use for stroke	51.0 (36.7-65.2)	48.7 (41.1-56.3)	.78			
Statin in CAD	26.8 (19.7-35.2)	58.6 (54.1-63.0)	<.01			
Statin in DM	12.1 (9.23-15.57)	36.2 (33.4-39.2)	<.01			
Pharmacologic therapy for osteoporosis	35.3 (23.6-48.9)	45.1 (37.8-52.7)	.21			
Overuse measures group						
Prostate cancer screening in men aged >74 y	3.5 (2.4-5.1)	5.7 (4.6-7.0)	.03			
Screening EKG in adults in GME	6.1 (3.1-11.5)	11.3 (5.9-20.8)	.20			
Screening UA in adults in GME	39.9 (29.5-51.4)	25.3 (17.2-35.6)	.05			
Screening x-ray in adults in GME	4.7 (2.4-9.1)	7.0 (3.2-14.5)	.47			
Screening CBC in adults in GME	22.3 (13.1-35.3)	37.9 (26.8-50.6)	.08			
Cervical cancer screening in women aged > 65 y	3.1 (2.6-3.8)	2.2 (1.8-2.7)	.02			
Mammography screening for women aged >74 y	2.1 (1.5-3.0)	2.6 (2.0-3.5)	.35			
Imaging for back pain in adults aged >18 y	19.1 (15.2-24.1)	22.8 (18.4-27.9)	.25			
Abx for URI	37.8 (34.4-41.3)	40.2 (36.6-43.9)	.36			
Abx for acute bronchitis	60.8 (51.4-69.5)	58.8 (47.3-69.4)	.78			
Abx for asthma	22.3 (13.9-33.9)	6.8 (4.9-9.3)	.01			
Misuse measures group						
Abx other than nitrofurantoin/trimethoprim/quinolone use for UTI	24.9 (18.1-33.2)	2.7 (1.2-5.7)	<.01			
Inappropriate meds in the elderly	6.5 (5.8-7.3)	7.2 (6.3-8.1)	.29			

Abbreviations: Abx, antibiotics; ACE, angiotensin-converting enzyme; AF, atrial fibrillation; BB, β-blocker; CAD, coronary artery disease; CBC, complete blood count; CHF, congestive heart failure; DM, diabetes mellitus; EKG, electrocardiogram; GME, general medical examination; UA, urinalysis; URI, upper respiratory tract infection; UTI, urinary tract infection.

Conclusions

- Malnutrition is a negative prognostic factor.
- Medical Nutrition improves nutritional status.
- Medical Nutrition improves clinical outcome.
- The use of ONS has been demonstrated cost-effective in different clinical settings.
- In the next future, trials of medical nutrition should be based:
 - adequate statistical power
 - clinically relevant outcomes
 - cost-effective assessment

